JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mast cell tryptase reduces junctional adhesion molecule-A (JAM-A) expression in intestinal epithelial cells: implications for the mechanisms of barrier dysfunction in irritable bowel syndrome.

OBJECTIVES: The objective of this study was to investigate how mast cell tryptase may influence intestinal permeability and tight junction (TJ) proteins in vitro and explore translation to irritable bowel syndrome (IBS).

METHODS: We investigated the effect of: (1) tryptase on Caco-2 monolayers, (2) mast cell degranulation in a Caco-2/human mast cell-1 (HMC-1) co-culture model, (3) mast cell degranulation±tryptase inhibition with nafamostat mesilate (NM). Epithelial integrity was assessed by transepithelial resistance (TER), permeability to fluorescein isothiocyanate (FITC)-dextran and transmission electron microscopy (TEM). The expression of junctional proteins zonula occludens-1 (ZO-1), junctional adhesion molecule-A (JAM-A), claudin-1 (CLD-1), CLD-2, CLD-3, occludin and E-cadherin was determined by western blot analysis and immunofluorescence confocal microscopy. Based on the in vitro results, we further assessed JAM-A expression in biopsy tissue (cecum) from 34 IBS patients, 12 controls, and 8 inflammatory controls using immunofluorescence confocal microscopy and explored associations between JAM-A and IBS symptoms.

RESULTS: ptase disrupted epithelial integrity in Caco-2 monolayers as shown by a significant decrease in TER, an increase in permeability to FITC-dextran, and a decrease in the expression of junctional proteins JAM-A, CLD-1, and ZO-1 within 24 h. Correspondingly, in the Caco-2/HMC-1 co-culture model we showed a significant decrease in TER, an increase in permeability to FITC-dextran, and the presence of open TJs (TEM) in response to mast cell degranulation within 24 h. In this co-culture model, mast cell degranulation significantly decreased JAM-A and CLD-1 protein expression at 24 h. Tryptase inhibition (NM) significantly reduced the effect of mast cell degranulation on the junctional protein JAM-A, TER, and FITC-dextran flux. In IBS, epithelial JAM-A protein expression was significantly reduced in IBS tissue compared with controls. Lower JAM-A expression was associated with more severe abdominal pain (rs=-0.69, P=0.018) and longer duration of symptoms (rs=-0.7, P=0.012) in IBS-alternating subtype.

CONCLUSIONS: uced JAM-A expression in vitro appears to contribute to the underlying mechanisms of altered epithelial integrity in response to tryptase released from degranulating mast cells. In IBS, JAM-A expression was significantly reduced in the cecal epithelium and associated with abdominal pain severity. JAM-A may provide new insights into the underlying mechanisms in IBS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app