JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Genistein inhibits TNF-α-induced endothelial inflammation through the protein kinase pathway A and improves vascular inflammation in C57BL/6 mice.

Genistein, a soy isoflavone, has received wide attention for its potential to improve vascular function, but the mechanism of this effect is unclear. Here, we report that genistein at physiological concentrations (0.1 μM-5 μM) significantly inhibited TNF-α-induced adhesion of monocytes to human umbilical vein endothelial cells, a key event in the pathogenesis of atherosclerosis. Genistein also significantly suppressed TNF-α-induced production of adhesion molecules and chemokines such as sICAM-1, sVCAM-1, sE-Selectin, MCP-1 and IL-8, which play key role in the firm adhesion of monocytes to activated endothelial cells (ECs). Genistein at physiologically relevant concentrations didn't significantly induce antioxidant enzyme activities or scavenge free radicals. Further, blocking the estrogen receptors (ERs) in ECs didn't alter the preventive effect of genistein on endothelial inflammation. However, inhibition of protein kinase A (PKA) significantly attenuated the inhibitory effects of genistein on TNF-α-induced monocyte adhesion to ECs as well as the production of MCP-1 and IL-8. In animal study, dietary genistein significantly suppressed TNF-α-induced increase in circulating chemokines and adhesion molecules in C57BL/6 mice. Genistein treatment also reduced VCAM-1 and monocytes-derived F4/80-positive macrophages in the aorta of TNF-α-treated mice. In conclusion, genistein protects against TNF-α-induced vascular endothelial inflammation both in vitro and in vivo models. This anti-inflammatory effect of genistein is independent of the ER-mediated signaling machinery or antioxidant activity, but mediated via the PKA signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app