Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Indole-3-carbinol and 3',3'-diindolylmethane modulate androgen's effect on C-C chemokine ligand 2 and monocyte attraction to prostate cancer cells.

Inflammation has a role in prostate tumorigenesis. Recruitment of inflammatory monocytes to the tumor site is mediated by C-C chemokine ligand 2 (CCL2) through binding to its receptor CCR2. We hypothesized that androgen could modulate CCL2 expression in hormone-responsive prostate cancer cells and thereby promote recruitment of monocytes. Given the inhibitory effect of broccoli-derived compounds indole-3-carbinol (I3C) and 3,3'-diindolylmethane (DIM) on androgen-dependent pathways, we also reasoned that I3C and DIM could modulate the effect of androgen on CCL2-mediated pathways. Dihydrotestosterone was found to induce a time-dependent (0-72 hours) and concentration-dependent (0-1 nmol/L) increase in CCL2 mRNA levels in androgen-responsive human prostate cancer cells (LNCaP). This increase in CCL2 mRNA corresponded with increased secretion of CCL2 protein. The effect of dihydrotestosterone was mediated through an androgen receptor (AR)-dependent pathway as small inhibitor RNA against AR negated the induction of CCL2. Although dihydrotestosterone also induced TWIST1 mRNA, an epithelial-mesenchymal transition-related factor, and purported inducer of CCL2, blocking its expression with small inhibitor RNA did not inhibit dihydrotestosterone induction of CCL2 mRNA. Moreover, conditioned media from androgen-treated cells promoted human monocyte THP-1 cell migration and this effect was blocked by antibody against CCL-2. Both I3C and DIM inhibited promotional effects of dihydrotestosterone on CCL2 and migration. These results show that androgen may regulate CCL2 and promote inflammatory microenvironment in prostate tumors and that this process can be blocked by broccoli-derived compounds.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app