Add like
Add dislike
Add to saved papers

Kinetics and mechanism of oxygen reduction in a protic ionic liquid.

The oxygen reduction reaction (ORR) has been studied at Pt surfaces in the protic ionic liquid diethylmethylammonium trifluoromethanesulfonate. Water content measurements suggested that the ORR proceeded in the ionic liquid predominantly via a 4-electron reduction to water. A mechanistic analysis using rotating ring-disk electrode (RRDE) voltammetry confirmed that negligible amounts of hydrogen peroxide were formed during the ORR. A kinetic analysis of the ORR was performed using rotating disk electrode (RDE) voltammetry and the importance of correcting for ohmic (iR) drop prior to performing kinetic measurements in the ionic liquid is demonstrated. A Tafel analysis of the RDE voltammetry data revealed a change in the ORR Tafel slope from 70 mV per decade at low ORR overpotentials to 117 mV per decade at high overpotentials, and the reason for this change is discussed. The change in the Tafel slope for the ORR with increasing overpotential meant that the exchange current density for the ORR varied from 0.007 nA cm(-2) to 10 nA cm(-2), depending on the applied potential. Finally, the implications of these results for the development of protic ionic liquid fuel cells are discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app