A two-stage Bayesian design with sample size reestimation and subgroup analysis for phase II binary response trials

Wei Zhong, Joseph S Koopmeiners, Bradley P Carlin
Contemporary Clinical Trials 2013, 36 (2): 587-96
Frequentist sample size determination for binary outcome data in a two-arm clinical trial requires initial guesses of the event probabilities for the two treatments. Misspecification of these event rates may lead to a poor estimate of the necessary sample size. In contrast, the Bayesian approach that considers the treatment effect to be random variable having some distribution may offer a better, more flexible approach. The Bayesian sample size proposed by (Whitehead et al., 2008) for exploratory studies on efficacy justifies the acceptable minimum sample size by a "conclusiveness" condition. In this work, we introduce a new two-stage Bayesian design with sample size reestimation at the interim stage. Our design inherits the properties of good interpretation and easy implementation from Whitehead et al. (2008), generalizes their method to a two-sample setting, and uses a fully Bayesian predictive approach to reduce an overly large initial sample size when necessary. Moreover, our design can be extended to allow patient level covariates via logistic regression, now adjusting sample size within each subgroup based on interim analyses. We illustrate the benefits of our approach with a design in non-Hodgkin lymphoma with a simple binary covariate (patient gender), offering an initial step toward within-trial personalized medicine.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"