JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Glycogen synthase kinase-3 beta regulates Snail and β-catenin expression during Fas-induced epithelial-mesenchymal transition in gastrointestinal cancer.

Fas signalling has been shown to induce the epithelial-mesenchymal transition (EMT) to promote gastrointestinal (GI) cancer metastasis, but its mechanism of action is still unknown. The effects of Fas-ligand (FasL) treatment and inhibition of Fas signalling on GI cancer cells were tested using invasion assay, immunofluorescence, immunoblot, Reverse Transcription Polymerase Chain Reaction (RT-PCR), quantitative Real-time PCR (qRT-PCR), immunoprecipitation and luciferase reporter assay. Immunohistochemistry was used to analyse the EMT-associated molecules in GI cancer specimens. FasL treatment inhibited E-cadherin transcription by upregulation of Snail in GI cancer cells. The nuclear expression and transcriptional activity of Snail and β-catenin were increased by inhibitory phosphorylation of glycogen synthase kinase-3 beta (GSK-3β) at Ser9 by FasL-induced extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) signalling. Snail associated with β-catenin in the nucleus and, thus, increased β-catenin transcriptional activity. Evaluation of human GI cancer specimens showed that the expression of FasL, phospho-GSK-3β, Snail and β-catenin increase during GI cancer progression. An EMT phenotype was shown to correlate with an advanced cancer stage, and a non-EMT phenotype significantly correlated with a better prognosis. Collectively, these data indicate that GSK-3β regulates Snail and β-catenin expression during Fas-induced EMT in gastrointestinal cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app