Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Coexistence of adsorption and coagulation processes of both arsenate and NOM from contaminated groundwater by nanocrystallined Mg/Al layered double hydroxides.

Water Research 2013 August 2
In this study, nanocrystallined Mg/Al layered double hydroxides (LDH-CO3) and chloridion intercalated nanocrystallined Mg/Al LDHs (LDH-Cl) were synthesized and used for simultaneous removal of arsenic and natural organic matter (NOM) from contaminated groundwater. Humic acid (HA) was selected as a model compound of NOM. The maximum adsorption capacities of arsenate (As(V)) on LDH-CO3 and LDH-Cl are 44.66 and 88.30 mg/g, respectively, and those of HA on LDH-CO3 and LDH-Cl are 53.16 and 269.24 mg/g, respectively. It was found that more than 98% of arsenic and 94% of NOM were eliminated by LDH-Cl from both arsenic and NOM-rich groundwater, which is used as drinking water in Togtoh County, Inner Mongolia, China. The arsenic concentration declined from 231 to 4 μg/L, which meets the drinking water standard. The adsorption mechanisms were determined by using X-ray diffraction (XRD), Fourier transformed infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and extended X-ray absorption fine structure spectroscopy techniques (EXAFS). The results showed that the removal of HA was mainly via surface complexation as well as coagulation at the surface of LDHs, while the adsorption of As(V) was mainly via ion-exchange process. The presence of HA exhibited little inhibiting effect on As(V) adsorption by occupying partial binding sites on LDH surfaces. Nevertheless, it could not affect the ion-exchange process of As(V) with the interlayer anions of LDHs. The removal of As(V) and HA can be carried out independently due to the different adsorption mechanisms. By integrating the experimental results, it is clear that LDH-Cl can be potentially used as a cost-effective material for the purification of both arsenic and NOM contaminated groundwater.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app