Add like
Add dislike
Add to saved papers

Inhibition of vascular permeability by antisense-mediated inhibition of plasma kallikrein and coagulation factor 12.

Hereditary angioedema (HAE) is a rare disorder characterized by recurrent, acute, and painful episodes of swelling involving multiple tissues. Deficiency or malfunction of the serine protease inhibitor C1 esterase inhibitor (C1-INH) results in HAE types 1 and 2, respectively, whereas mutations in coagulation factor 12 (f12) have been associated with HAE type 3. C1-INH is the primary inhibitor of multiple plasma cascade pathways known to be altered in HAE patients, including the complement, fibrinolytic, coagulation, and kinin-kallikrein pathways. We have selectively inhibited several components of both the kinin-kallikrein system and the coagulation cascades with potent and selective antisense oligonucleotides (ASOs) to investigate their relative contributions to vascular permeability. We have also developed ASO inhibitors of C1-INH and characterized their effects on vascular permeability in mice as an inducible model of HAE. Our studies demonstrate that ASO-mediated reduction in C1-INH plasma levels results in increased vascular permeability and that inhibition of proteases of the kinin-kallikrein system, either f12 or prekallikrein (PKK) reverse the effects of C1-INH depletion with similar effects on both basal and angiotensin converting enzyme (ACE) inhibitor-induced permeability. In contrast, inhibition of coagulation factors 11 (f11) or 7 (f7) had no effect. These results suggest that the vascular defects observed in C1-INH deficiency are dependent on the kinin-kallikrein system proteases f12 and PKK, and not mediated through the coagulation pathways. In addition, our results highlight a novel therapeutic modality that can potentially be employed prophylactically to prevent attacks in HAE patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app