Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Three-dimensional digital capture of head size in neonates - a method evaluation.

INTRODUCTION: The quality of neonatal care is mainly determined by long-term neurodevelopmental outcome. The neurodevelopment of preterm infants is related to postnatal head growth and depends on medical interventions such as nutritional support. Head circumference (HC) is currently used as a two-dimensional measure of head growth. Since head deformities are frequently found in preterm infants, HC may not always adequately reflect head growth. Laser aided head shape digitizers offer semiautomatic acquisition of HC and cranial volume (CrV) and could thus be useful in describing head size more precisely.

AIMS: 1) To evaluate reproducibility of a 3D digital capture system in newborns. 2) To compare manual and digital HC measurements in a neonatal cohort. 3) To determine correlation of HC and CrV and predictive value of HC.

METHODS: Within a twelve-month period data of head scans with a laser shape digitizer were analysed. Repeated measures were used for method evaluation. Manually and digitally acquired HC was compared. Regression analysis of HC and CrV was performed.

RESULTS: Interobserver reliability was excellent for HC (bias-0.005%, 95% Limits of Agreement (LoA) -0.39-0.39%) and CrV (bias1.5%, 95%LoA-0.8-3.6%). Method comparison data was acquired from 282 infants. It revealed interchangeability of the methods (bias-0.45%; 95%LoA-4.55-3.65%) and no significant systematic or proportional differences. HC and CrV correlated (r(2) = 0.859, p<0.001), performance of HC predicting CrV was poor (RSD ±24 ml). Correlation was worse in infants with lower postmenstrual age (r(2) = 0.745) compared to older infants (r(2) = 0.843).

DISCUSSION: The current practice of measuring HC for describing head growth in preterm infants could be misleading since it does not represent a 3D approach. CrV can vary substantially in infants of equal HC. The 3D laser scanner represents a new and promising method to provide reproducible data of CrV and HC. Since it does not provide data on cerebral structures, additional imaging is required.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app