JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Acetylated hsp70 and KAP1-mediated Vps34 SUMOylation is required for autophagosome creation in autophagy.

Autophagy is a stress-induced catabolic process in which cytoplasmic components, sequestered in double-membrane autophagic vesicles (AVs) or autophagosomes, are delivered to lysosomes for degradation and recycling [Kroemer G, Mariño G, Levine B (2010) Mol Cell 40(2):280-293]. Activity of the class III phosphatidylinositol-3-OH-kinase (PI3K) vacuolar protein-sorting (Vps) 34, bound to coiled-coil moesin-like B-cell lymphoma 2 (Bcl-2)-interacting protein Beclin-1, is required for phosphoinositide generation, essential for AV formation in autophagy [Cuervo AM (2010) Nat Cell Biol 12(8):735-737]. However, how autophagy-inducing stress regulates Vps34 activity has not been fully elucidated. Our findings demonstrate that autophagy-inducing stress increases intracellular levels of acetylated inducible heat shock protein (hsp) 70, which binds to the Beclin-1-Vps34 complex. Acetylated hsp70 also recruits E3 ligase for SUMOylation, KRAB-ZFP-associated protein 1 (KAP1), inducing Lys840 SUMOylation and increasing Vps34 activity bound to Beclin 1. Knockdown of hsp70 abolished the Beclin-1-Vps34 complex formation, as well as inhibited KAP1 binding to Vps34 and AV formation. Notably, autophagy-inducing stress due to histone deacetylase inhibitor treatment induced AV formation in the wild-type but not hsp70.1/3 knockout mouse embryonic fibroblasts MEFs. These findings highlight a regulatory mechanism of Vps34 activity, which involves acetylated hsp70 and KAP1-dependent SUMOylation of Vps34 bound to Beclin 1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app