Airway smooth muscle CXCR3 ligand production: regulation by JAK-STAT1 and intracellular Ca²⁺

X Tan, Y A Alrashdan, H Alkhouri, B G G Oliver, C L Armour, J M Hughes
American Journal of Physiology. Lung Cellular and Molecular Physiology 2013 June 1, 304 (11): L790-802
In asthma, airway smooth muscle (ASM) chemokine (C-X-C motif) receptor 3 (CXCR3) ligand production may attract mast cells or T lymphocytes to the ASM, where they can modulate ASM functions. In ASM cells (ASMCs) from people with or without asthma, we aimed to investigate JAK-STAT1, JNK, and Ca²⁺ involvement in chemokine (C-X-C motif) ligand (CXCL)10 and CXCL11 production stimulated by interferon-γ, IL-1β, and TNF-α combined (cytomix). Confluent, growth-arrested ASMC were treated with inhibitors for pan-JAK (pyridone-6), JAK2 (AG-490), JNK (SP-600125), or the sarco(endo)plasmic reticulum Ca²⁺ATPase (SERCA) pump (thapsigargin), Ca²⁺ chelator (BAPTA-AM), or vehicle before and during cytomix stimulation for up to 24 h. Signaling protein activation as well as CXCL10/CXCL11 mRNA and protein production were examined using immunoblot analysis, real-time PCR, and ELISA, respectively. Cytomix-induced STAT1 activation was lower and CXCR3 ligand mRNA production was more sensitive to pyridone-6 and AG-490 in asthmatic than nonasthmatic ASMCs, but CXCL10/CXCL11 release was inhibited by the same proportion. Neither agent caused additional inhibition of release when used in combination with the JNK inhibitor SP-600125. Conversely, p65 NF-κB activation was higher in asthmatic than nonasthmatic ASMCs. BAPTA-AM abolished early CXCL10/CXCL11 mRNA production, whereas thapsigargin reduced it in asthmatic cells and inhibited CXCL10/CXCL11 release by both ASMC types. Despite these inhibitory effects, neither Ca²⁺ agent affected early activation of STAT1, JNK, or p65 NF-κB. In conclusion, intracellular Ca²⁺ regulated CXCL10/CXCL11 production but not early activation of the signaling molecules involved. In asthma, reduced ASM STAT1-JNK activation, increased NF-κB activation, and altered Ca²⁺ handling may contribute to rapid CXCR3 ligand production and enhanced inflammatory cell recruitment.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"