Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging

Wen-Hsuan Chiang, Wen-Chia Huang, Chien-Wen Chang, Ming-Yin Shen, Zong-Fu Shih, Yi-Fong Huang, Sung-Chyr Lin, Hsin-Cheng Chiu
Journal of Controlled Release 2013 June 28, 168 (3): 280-8
A novel tumor-targeting polymersome carrier system capable of delivering magnetic resonance imaging (MRI) and chemotherapy is presented in this study. The doxorubicin (DOX)-loaded magnetic polymersomes were first attained by the self-assembly of lipid-containing copolymer, poly(acrylic acid-co-distearin acrylate), in aqueous solution containing citric acid-coated superparamagnetic iron oxide nanoparticles (SPIONs), and followed by DOX loading via electrostatic attraction. To further functionalize these artificial vesicles with superior in vivo colloidal stability, pH-tunable drug release and active tumor-targeting, chitosan and poly(γ-glutamic acid-co-γ-glutamyl oxysuccinimide)-g-poly(ethyleneglycol)-folate (FA) were deposited in sequence onto the assembly outer surfaces. The interfacial nanogel layers via complementary electrostatic interactions and in-situ covalent cross-linking were thus produced. These nanogel-caged polymersomes (NCPs) show excellent anti-dilution and serum proteins-repellent behaviors. Triggerable release of the encapsulated DOX was governed by dual external stimuli, pH and temperature. When these theranostic NCPs were effectively internalized by HeLa cells via FA receptor-mediated endocytosis and then exposed to high frequency magnetic fields (HFMF), the combined effects of both pH and magnetic hyperthermia-triggered drug release and thermo-therapy resulted in greater cytotoxicity than the treatment by DOX alone. By virtue of the SPION clustering effect in the assembly inner aqueous compartments, the SPION/DOX-loaded NCPs displayed an r₂ relaxivity value (255.2 F emM⁻¹ S⁻¹) higher than Resovist (183.4 F emM⁻¹ S⁻¹), a commercial SPION-based T₂ contrast agent. The high magnetic relaxivity of the tumor-targeting NCPs coupled with their enhanced cellular uptake considerably promoted the MRI contrast of targeted cancer cells. These results demonstrate the great potential of the FA-decorated SPION/DOX-loaded NCPs as an advanced cancer theranostic nanodevice.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"