Comparative Study
Evaluation Studies
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Comparison of typing methods with a new procedure based on sequence characterization for Salmonella serovar prediction.

As the development of molecular serotyping approaches is critical for Salmonella spp., which include >2,600 serovars, we performed an initial evaluation of the ability to identify Salmonella serovars using (i) different molecular subtyping methods and (ii) a newly implemented combined PCR- and sequencing-based approach that directly targets O- and H-antigen-encoding genes. Initial testing was performed using 46 isolates that represent the top 40 Salmonella serovars isolated from human and nonhuman sources, as reported by the U.S. Centers for Disease Control and Prevention and the World Health Organization. Multilocus sequence typing (MLST) was able to accurately predict the serovars for 42/46 isolates and showed the best ability to predict serovars among the subtyping methods tested. Pulsed-field gel electrophoresis (PFGE), ribotyping, and repetitive extragenic palindromic sequence-based PCR (rep-PCR) were able to accurately predict the serovars for 35/46, 34/46, and 30/46 isolates, respectively. Among the methods, S. enterica subsp. enterica serovars 4,5,12:i:-, Typhimurium, and Typhimurium var. 5- were frequently not classified correctly, which is consistent with their close phylogenetic relationship. To develop a PCR- and sequence-based serotyping approach, we integrated available data sources to implement a combination PCR-based O-antigen screening and sequencing of internal fliC and fljB fragments. This approach correctly identified the serovars for 42/46 isolates in the initial set representing the most common Salmonella serovars, as well as for 54/63 isolates representing less common Salmonella serovars. Our study not only indicates that different molecular approaches show the potential to allow for rapid serovar classification of Salmonella isolates, but it also provides data that can help with the selection of molecular serotyping methods to be used by different laboratories.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app