CONGRESSES
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Role of the cytoskeleton in communication between L-type Ca(2+) channels and mitochondria.

The L-type Ca(2+) channel is the main route for Ca(2+) entry into cardiac myocytes, which is essential for the maintenance of cardiac excitation and contraction. Alterations in L-type Ca(2+) channel activity and Ca(2+) homeostasis have been implicated in the development of cardiomyopathies. Cardiac excitation and contraction is fuelled by ATP, synthesized predominantly by the mitochondria via the Ca(2+)-dependent process oxidative phosphorylation. Mitochondrial reactive oxygen species (ROS) are by-products of oxidative phosphorylation and are associated with the development of cardiac pathology. The cytoskeleton plays a role in the communication of signals from the plasma membrane to intracellular organelles. There is good evidence that both L-type Ca(2+) channel activity and mitochondrial function can be modulated by changes in the cytoskeletal network. Activation of the L-type Ca(2+) channel can regulate mitochondrial function through cytoskeletal proteins as a result of transmission of movement from the β(2)-subunit of the channel that occurs during activation and inactivation of the channel. An association between cytoskeletal proteins and the mitochondrial voltage-dependent anion channel (VDAC) may play a role in this response. The L-type Ca(2+) channel is the initiator of contraction in cardiac muscle and the VDAC is responsible for regulating mitochondrial ATP/ADP trafficking. This article presents evidence that a functional coupling between L-type Ca(2+) channels and mitochondria may assist in meeting myocardial energy demand on a beat-to-beat basis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app