Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Biomimetic synthesis of TiO₂-SiO₂-Ag nanocomposites with enhanced visible-light photocatalytic activity.

Ternary TiO2-SiO2-Ag nanocomposites with enhanced visible-light photocatalytic activity have been synthesized through a facile biomimetic approach by utilizing lysozyme as both inducing agent of TiO2 and reducing agent of Ag(+). TiO2 nanoparticles (∼280 nm) are at first fabricated by the inducing of lysozyme. Afterward, SiO2 layers are formed as "pancakes" stuck out of TiO2 nanoparticles through a sol-gel process. Finally, Ag nanocrystals (∼24.5 nm) are deposited onto the surface of TiO2-SiO2 composites via the reduction of lysozyme, forming TiO2-SiO2-Ag nanocomposites. The resultant nanocomposites display a high photocatalytic activity for the degradation of Rhodamine B under the visible-light irradiation, which can be attributed to the synergistic effect of enhanced photon absorption from the surface plasma resonance of Ag nanocrystals and the elevated adsorption capacity for Rhodamine B from the high specific surface area of SiO2. This study may provide some inspiration for the rational design and the facile synthesis of composite catalysts with a high and tunable catalytic property through a green, efficient pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app