JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Intrathecal granulocyte colony-stimulating factor modulate glial cell line-derived neurotrophic factor and vascular endothelial growth factor A expression in glial cells after experimental spinal cord ischemia.

Neuroscience 2013 July 10
The hematopoietic growth factor, granulocyte colony-stimulating factor (G-CSF), has become one of the few growth factors approved for clinical use. It has therapeutic potential for numerous neurodegenerative diseases; however, at present the cellular effects of G-CSF on the central nervous system remain unclear and in need of investigation. In the present study, we used spinal cord ischemia, a neurodegenerative model, to examine the effects of intrathecal (i.t.) G-CSF on glial cell (microglia and astrocyte) activation and neuroprotective factor expression, including glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor A (VEGF-A) protein expression. Our results indicate that i.t. G-CSF could enhance ischemia-induced microglial activation and inhibit ischemia-induced astrocyte activation. Both GDNF and VEGF-A are upregulated after injury, and i.t. G-CSF could enhance GDNF and VEGF-A expressions after injury. Interestingly, our results indicate that performing i.t. G-CSF alone on normal animals could have the effect of microglial and astrocyte activation and enhanced GDNF and VEGF-A expressions. Furthermore, through laser scanning confocal microscopy, we found that astrocytes may contribute to the majority of GDNF and VEGF-A expressions of G-CSF after spinal cord ischemia. Overall, this G-CSF-induced upregulation suggests that activation of endogenous neuroprotective mechanisms could resist neurodegenerative insults. These observations demonstrate the cellular mechanism of i.t. G-CSF after spinal cord ischemia and confirm the neuroprotective effect of G-CSF after spinal cord ischemia injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app