Add like
Add dislike
Add to saved papers

A novel inhibitor of c-Met and VEGF receptor tyrosine kinases with a broad spectrum of in vivo antitumor activities.

The c-Met receptor tyrosine kinase and its ligand, hepatocyte growth factor (HGF), are dysregulated in a wide variety of human cancers and are linked with tumorigenesis and metastatic progression. VEGF also plays a key role in tumor angiogenesis and progression by stimulating the proangiogenic signaling of endothelial cells via activation of VEGF receptor tyrosine kinases (VEGFR). Therefore, inhibiting both HGF/c-Met and VEGF/VEGFR signaling may provide a novel therapeutic approach for treating patients with a broad spectrum of tumors. Toward this goal, we generated and characterized T-1840383, a small-molecule kinase inhibitor that targets both c-Met and VEGFRs. T-1840383 inhibited HGF-induced c-Met phosphorylation and VEGF-induced VEGFR-2 phosphorylation in cancer epithelial cells and vascular endothelial cells, respectively. It also inhibited constitutively activated c-Met phosphorylation in c-met-amplified cancer cells, leading to suppression of cell proliferation. In addition, T-1840383 potently blocked VEGF-dependent proliferation and capillary tube formation of endothelial cells. Following oral administration, T-1840383 showed potent antitumor efficacy in a wide variety of human tumor xenograft mouse models, along with reduction of c-Met phosphorylation levels and microvessel density within tumor xenografts. These results suggest that the efficacy of T-1840383 is produced by direct effects on tumor cell growth and by an antiangiogenic mechanism. Furthermore, T-1840383 showed profound antitumor activity in a gastric tumor peritoneal dissemination model. Collectively, our findings indicate the therapeutic potential of targeting both c-Met and VEGFRs simultaneously with a single small-molecule inhibitor for the treatment of human cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app