Evaluation Studies
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition.

Chemosphere 2013 August
Morphological structures and adsorption properties of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition have been determined in laboratory. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDS), and Fourier transform infrared (FTIR) were used to characterize the biochar based ultra-composites. The XRD and FTIR data indicated that the biochar/MgAl-LDHs ultra-fine composites can successfully be obtained by liquid-phase deposition. The SEM images showed the dispersion of colloidal and nanosized LDH flakes on the carbon surfaces within the biochar matrix. The thickness and size of single LDH platelet are 20-40 nm and 100-300 nm. Batch sorption experiments were also conducted and the results indicated that the biochar/MgAl-LDHs ultra-fine composites is an effective sorbent for the removal of phosphate from aqueous solutions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app