Add like
Add dislike
Add to saved papers

5-HT1A sex based differences in Bmax, in vivo KD, and BPND in the nonhuman primate.

NeuroImage 2013 August 16
UNLABELLED: Serotonin (5-HT) dysfunction has been implicated in neuropsychiatric illnesses and may play a pivotal role in the differential prevalence of depression between the sexes. Previous PET studies have revealed sex-based differences in 5-HT1A binding potential (BPND). The binding potential is a function of the radioligand-receptor affinity (1/KDapp), and receptor density (Bmax). In this work, we use a multiple-injection (MI) PET protocol and the 5-HT1A receptor antagonist, [(18)F]mefway, to compare sex-based differences of in vivo affinity, Bmax, and BPND in rhesus monkeys.

METHODS: PET [(18)F]mefway studies were performed on 17 (6m, 11f) rhesus monkeys using a 3-injection protocol that included partial saturation injections of mefway. Compartmental modeling was performed using a model to account for non-tracer doses of mefway for the estimation of KDapp and Bmax. BPND estimates were also acquired from the first injection (high specific activity [(18)F]mefway, 90-minute duration) for comparison using the cerebellum (CB) as a reference region. Regions of interest were selected in 5-HT1A binding regions of the hippocampus (Hp), dorsal anterior cingulate cortex (dACC), amygdala (Am), and raphe nuclei (RN).

RESULTS: Female subjects displayed significantly (*p<0.05) lower KDapp in the Hp (-32%), Am (-38%), and RN (-37%). Only the Hp displayed significant differences in Bmax with females having a Bmax of -29% compared to males. Male subjects demonstrated significantly lower BPND measurements in the Am (14%) and RN (29%).

CONCLUSION: These results suggest that the higher BPND values found in females are the result of lower [(18)F]mefway KDapp. Although a more experimentally complex measurement, separate assay of KDapp and Bmax provides a more sensitive measure than BPND to identify the underlying differences between females and males in 5-HT1A function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app