CLINICAL TRIAL, PHASE II
JOURNAL ARTICLE
MULTICENTER STUDY
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Targeted inhibition of the molecular chaperone Hsp90 overcomes ALK inhibitor resistance in non-small cell lung cancer.

Cancer Discovery 2013 April
UNLABELLED: EML4-ALK gene rearrangements define a unique subset of patients with non-small cell lung carcinoma (NSCLC), and the clinical success of the anaplastic lymphoma kinase (ALK) inhibitor crizotinib in this population has become a paradigm for molecularly targeted therapy. Here, we show that the Hsp90 inhibitor ganetespib induced loss of EML4-ALK expression and depletion of multiple oncogenic signaling proteins in ALK-driven NSCLC cells, leading to greater in vitro potency, superior antitumor efficacy, and prolonged animal survival compared with results obtained with crizotinib. In addition, combinatorial benefit was seen when ganetespib was used with other targeted ALK agents both in vitro and in vivo. Importantly, ganetespib overcame multiple forms of crizotinib resistance, including secondary ALK mutations, consistent with activity seen in a patient with crizotinib-resistant NSCLC. Cancer cells driven by ALK amplification and oncogenic rearrangements of ROS1 and RET kinase genes were also sensitive to ganetespib exposure. Taken together, these results highlight the therapeutic potential of ganetespib for ALK-driven NSCLC.

SIGNIFICANCE: In addition to direct kinase inhibition, pharmacologic blockade of the molecular chaperone Hsp90 is emerging as a promising approach for treating tumors driven by oncogenic rearrangements of ALK. The bioactivity profi le of ganetespib presented here underscores a new therapeutic opportunity to target ALK and overcome multiple mechanisms of resistance in patients with ALK-positive NSCLC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app