JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Neuroblast pattern and identity in the Drosophila tail region and role of doublesex in the survival of sex-specific precursors.

Development 2013 April
The central nervous system is composed of segmental units (neuromeres), the size and complexity of which evolved in correspondence to their functional requirements. In Drosophila, neuromeres develop from populations of neural stem cells (neuroblasts) that delaminate from the early embryonic neuroectoderm in a stereotyped spatial and temporal pattern. Pattern units closely resemble the ground state and are rather invariant in thoracic (T1-T3) and anterior abdominal (A1-A7) segments of the embryonic ventral nerve cord. Here, we provide a comprehensive neuroblast map of the terminal abdominal neuromeres A8-A10, which exhibit a progressively derived character. Compared with thoracic and anterior abdominal segments, neuroblast numbers are reduced by 28% in A9 and 66% in A10 and are almost entirely absent in the posterior compartments of these segments. However, all neuroblasts formed exhibit serial homology to their counterparts in more anterior segments and are individually identifiable based on their combinatorial code of marker gene expression, position, delamination time point and the presence of characteristic progeny cells. Furthermore, we traced the embryonic origin and characterised the postembryonic lineages of a set of terminal neuroblasts, which have been previously reported to exhibit sex-specific proliferation behaviour during postembryonic development. We show that the respective sex-specific product of the gene doublesex promotes programmed cell death of these neuroblasts in females, and is needed for their survival, but not proliferation, in males. These data establish the terminal neuromeres as a model for further investigations into the mechanisms controlling segment- and sex-specific patterning in the central nervous system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app