JOURNAL ARTICLE

Sporicidal efficacy of pH-adjusted bleach for control of bioburden on production facility surfaces

Anne Cornish Frazer, Josephine N Smyth, Vishvesh K Bhupathiraju
Journal of Industrial Microbiology & Biotechnology 2013, 40 (6): 601-11
23532317
pH-adjusted bleach was one of the agents used to disinfect contaminated public buildings in the USA following the 2001 bioterrorist attack with Bacillus anthracis spores. A USEPA fact sheet describes the preparation of pH-adjusted bleach by combining diluted sodium hypochlorite (NaOCl) with a controlled amount of 5 % acetic acid. This paper reports a modification of this procedure to qualify the use of pH-adjusted bleach for routine disinfection of cleanroom surfaces in pharmaceutical manufacturing facilities whenever a short contact time is desirable or there is a need for enhanced germicidal or sporicidal activity. Adjustment of pH was obtained reproducibly with either acetic acid or HCl, confirming the feasibility of developing standard procedures for the controlled addition of acid to diluted NaOCl solutions without compromising operator safety and convenience. Efficacy testing using spores from an in-house isolate of Bacillus pumilus confirmed that NaOCl solutions in the pH 5-8 range have much greater sporicidal activity on surfaces than do unadjusted alkaline solutions (pH > 11). With a contact time of 0.5 min, the log10 reduction in spore viable counts was >5.4 for the five representative surfaces tested relative to untreated controls. Solutions of pH-adjusted NaOCl are known to be less stable than unadjusted alkaline solutions. Stability studies were performed by monitoring sporicidal efficacy, level of free available chlorine (FAC), and pH. Testing included several NaOCl concentrations and adjustment to different starting pHs. The efficacy of pH-adjusted solutions persisted in open containers for at least 12 h even though some FAC degradation occurred. In addition, solutions of 0.29 or 0.50 % NaOCl stored at room temperature protected from light retained efficacy for at least 4 weeks, indicating that short-term storage of solutions is possible following pH adjustment. The inorganic chemical degradation of pH-adjusted NaOCl solutions generates chlorate ion, an undesirable by-product. A comparison of chemical stability for 0.12, 0.25, and 0.50 % NaOCl solutions adjusted to different initial pHs indicated that the least chlorate formation occurred with 0.12 % NaOCl.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
23532317
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"