Spectra and dynamics in the B800 antenna: comparing hierarchical equations, Redfield and Förster theories

Vladimir Novoderezhkin, Rienk van Grondelle
Journal of Physical Chemistry. B 2013 September 26, 117 (38): 11076-90
We model the spectra (absorption and circular dichroism) and excitation dynamics in the B800 ring of the LH2 antenna complex from Rs. molischianum using different theoretical approaches, i.e., Förster theory, standard and modified versions of the Redfield theory, and the more versatile nonperturbative approach based on hierarchically coupled equations for the reduced density operator. We demonstrate that, although excitations in the B800 ring are localized due to disorder, thermal effects, and phonons, there are still sizable excitonic effects producing shift, narrowing, and asymmetry of the spectra. Moreover, the excitation dynamics reveals the presence of long-lived (up to 1 ps) non-oscillatory coherences between the exciton states maintained due to nonsecular population-to-coherence transfers. The sub-ps decay of the coherences is followed by slow motion of the excitation around the ring, producing equilibration of the site populations with a time constant of about 3-4 ps, which is slower than the B800 → B850 transfer. The exact solution obtained with the hierarchical equations is compared with other approaches, thus illustrating limitations of the Förster and Redfield pictures.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"