JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil.

Nano Letters 2013 April 11
Hexagonal boron nitride (h-BN) is gaining significant attention as a two-dimensional dielectric material, along with graphene and other such materials. Herein, we demonstrate the growth of highly crystalline, single-layer h-BN on Pt foil through a low-pressure chemical vapor deposition method that allowed h-BN to be grown over a wide area (8 × 25 mm(2)). An electrochemical bubbling-based method was used to transfer the grown h-BN layer from the Pt foil onto an arbitrary substrate. This allowed the Pt foil, which was not consumed during the process, to be recycled repeatedly. The UV-visible absorption spectrum of the single-layer h-BN suggested an optical band gap of 6.06 eV, while a high-resolution transmission electron microscopy image of the same showed the presence of distinct hexagonal arrays of B and N atoms, which were indicative of the highly crystalline nature and single-atom thickness of the h-BN layer. This method of growing single-layer h-BN over large areas was also compatible with use of a sapphire substrate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app