Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Vemurafenib reverses immunosuppression by myeloid derived suppressor cells.

Myeloid derived suppressor cells (MDSCs) suppress innate and adaptive immunity, thereby limiting anti-tumor immune responses in cancer patients. In patients with advanced melanoma, the phenotype and function of MDSCs remains controversial. In our study, we further explored two distinct subpopulations of MDSCs and investigated the impact of Vemurafenib on these cells. Flow cytometry analysis revealed that in comparison to healthy donors and patients with localized disease, PBMCs from patients with metastatic melanoma showed an increased frequency of CD14(+) HLA-DR(-/low) monocytic MDSCs (moMDSCs) and of a previously unrecognized population of CD14(-) CD66b(+) Arginase1(+) granulocytic MDSCs (grMDSCs). In vitro, both populations suppressed autologous T-cell proliferation, which was tested in CFSE-based proliferation assays. Vemurafenib treatment of melanoma patients reduced the frequency of both moMDSCs and grMDSCs. According to our in vivo finding, conditioned medium (CM) from Vemurafenib treated melanoma cells was less active in inducing moMDSCs in vitro than CM from untreated melanoma cells. In conclusion, patients with advanced melanoma show increased levels of moMDSCs, and of a population of CD14(-) CD66b(+) Arginase1(+) grMDSCs. Both MDSCs are distinct populations capable of suppressing autologous T-cell responses independently of each other. In vitro as well as in vivo, Vemurafenib inhibits the generation of human moMDSCs. Thus, Vemurafenib decreases immunosuppression in patients with advanced melanoma, indicating its potential as part of future immunotherapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app