JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

WNT/β-catenin signaling induces IL-1β expression by alveolar epithelial cells in pulmonary fibrosis.

Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease of unknown etiology. It is characterized by alterations of the alveolar epithelium, myofibroblast activation, and increased extracellular matrix deposition. Recently, reactivation of the developmental WNT/β-catenin pathway has been linked with pulmonary fibrosis. The cell-specific mechanisms and mediators of WNT/β-catenin signaling in the lung, however, remain elusive. Here, we applied an unbiased gene expression screen to identify epithelial cell-specific mediators of WNT/β-catenin signaling. We found the proinflammatory cytokine IL-1β to be one of the most up-regulated genes in primary murine alveolar epithelial Type II (ATII) cells after WNT3a treatment. Increased transcript and protein expression of IL-1β upon WNT3a treatment was further detected in primary ATII cells by quantitative RT-PCR (log fold change, 2.0 ± 0.5) and ELISA (1.8-fold increase). We observed significant up-regulation of IL-1β and IL-6 in bronchoalveolar lavage fluid (BALF) in bleomycin-induced lung fibrosis in vivo. Importantly, primary fibrotic ATII cells isolated from lungs subjected to bleomycin secreted enhanced IL-1β and IL-6 in vitro. Furthermore, the orotracheal application of recombinant WNT protein in the Tcf optimal promoter (TOP)-β-galactosidase reporter animals led to WNT/β-catenin activation in epithelial cells, along with significant increases in IL-1β and IL-6 in vivo (2.7-fold and 6.0-fold increases, respectively). Finally, we found increased WNT3a protein in fibrotic alveolar epithelia, accompanied by enhanced IL-1β and IL-6 concentrations in BALF from patients with IPF. Taken together, our findings reveal that the alveolar epithelium is a relevant source of proinflammatory cytokines induced by active WNT/β-catenin in pulmonary fibrosis. Thus, WNT/interleukin signaling represents a novel link between developmental pathway reactivation and inflammation in the development of pulmonary fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app