Aldosterone increases early atherosclerosis and promotes plaque inflammation through a placental growth factor-dependent mechanism

Adam P McGraw, Jessamyn Bagley, Wei-Sheng Chen, Carol Galayda, Heather Nickerson, Andrea Armani, Massimiliano Caprio, Peter Carmeliet, Iris Z Jaffe
Journal of the American Heart Association 2013 February 22, 2 (1): e000018

BACKGROUND: Aldosterone levels correlate with the incidence of myocardial infarction and mortality in cardiovascular patients. Aldosterone promotes atherosclerosis in animal models, but the mechanisms are poorly understood.

METHODS AND RESULTS: Aldosterone was infused to achieve pathologically relevant levels that did not increase blood pressure in the atherosclerosis-prone apolipoprotein E-knockout mouse (ApoE-/-). Aldosterone increased atherosclerosis in the aortic root 1.8±0.1-fold after 4 weeks and in the aortic arch 3.7±0.2-fold after 8 weeks, without significantly affecting plaque size in the abdominal aorta or traditional cardiac risk factors. Aldosterone treatment increased lipid content of plaques (2.1±0.2-fold) and inflammatory cell content (2.2±0.3-fold), induced early T-cell (2.9±0.3-fold) and monocyte (2.3±0.3-fold) infiltration into atherosclerosis-prone vascular regions, and enhanced systemic inflammation with increased spleen weight (1.52±0.06-fold) and the circulating cytokine RANTES (regulated and normal T cell secreted; 1.6±0.1-fold). To explore the mechanism, 7 genes were examined for aldosterone regulation in the ApoE-/- aorta. Further studies focused on the proinflammatory placental growth factor (PlGF), which was released from aldosterone-treated ApoE-/- vessels. Activation of the mineralocorticoid receptor by aldosterone in human coronary artery smooth muscle cells (SMCs) caused the release of factors that promote monocyte chemotaxis, which was inhibited by blocking monocyte PlGF receptors. Furthermore, PlGF-deficient ApoE-/- mice were resistant to early aldosterone-induced increases in plaque burden and inflammation.

CONCLUSIONS: Aldosterone increases early atherosclerosis in regions of turbulent blood flow and promotes an inflammatory plaque phenotype that is associated with rupture in humans. The mechanism may involve SMC release of soluble factors that recruit activated leukocytes to the vessel wall via PlGF signaling. These findings identify a novel mechanism and potential treatment target for aldosterone-induced ischemia in humans.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"