Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Transcriptional response of nitrifying communities to wetting of dry soil.

The first rainfall following a severe dry period provides an abrupt water potential change that is both an acute physiological stress and a defined stimulus for the reawakening of soil microbial communities. We followed the responses of indigenous communities of ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and nitrite-oxidizing bacteria to the addition of water to laboratory incubations of soils taken from two California annual grasslands following a typically dry Mediterranean summer. By quantifying transcripts for a subunit of bacterial and archaeal ammonia monooxygenases (amoA) and a bacterial nitrite oxidoreductase (nxrA) in soil from 15 min to 72 h after water addition, we identified transcriptional response patterns for each of these three groups of nitrifiers. An increase in quantity of bacterial amoA transcripts was detectable within 1 h of wet-up and continued until the size of the ammonium pool began to decrease, reflecting a possible role of transcription in upregulation of nitrification after drought-induced stasis. In one soil, the pulse of amoA transcription lasted for less than 24 h, demonstrating the transience of transcriptional pools and the tight coupling of transcription to the local soil environment. Analysis of 16S rRNA using a high-density microarray suggested that nitrite-oxidizing Nitrobacter spp. respond in tandem with ammonia-oxidizing bacteria while nitrite-oxidizing Nitrospina spp. and Nitrospira bacteria may not. Archaeal ammonia oxidizers may respond slightly later than bacterial ammonia oxidizers but may maintain elevated transcription longer. Despite months of desiccation-induced inactivation, we found rapid transcriptional response by all three groups of soil nitrifiers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app