JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A murine femoral segmental defect model for bone tissue engineering using a novel rigid internal fixation system.

BACKGROUND: As a model animal, the mouse has already been widely used in bone-related research. However, there is a lack of ideal long bone segmental defect mouse model. Since external fixation has disadvantages of heavy weight, penetrating the skin, and hampering mobility, an internal fixation device is probably more preferable to maintain the segmental bone defect. The aim of this study was to establish a simple, reproducible, and standardized murine critical-size defect model through designing an internal fixation system, verifying its adaptability, and investigating the critical size of femoral segmental defect.

METHODS: By utilizing computer-aided measuring and processing system, anatomical data of adult C57BL/6 mouse femur was obtained, and a plate-bolts system was designed for rigid fixation. The plate and screws were fixed in 67 mice and 1.5 or 2.0 mm defect gaps were created in the femoral midshaft. Compression and three-point bending of bone-implant construct were tested in mice at 0, 2, 5, and 12 wk postoperative to test the biomechanical stability. X-ray, micro-computed tomography, and histology were used to investigate the defect healing process.

RESULTS: The plate- and screws-fitted mouse femur and unilateral or bilateral operation had seemingly no adverse impact on the mouse in general. Mechanical tests indicated that there were no significant differences between the bone-implant construct and intact femur in compression and three-point bending loading. Micro-computed tomography scanning showed the bone mineral density had not been affected by the implantation of fixation device. There was no union of the 2.0 mm segmental defect in 12-wk period.

CONCLUSION: Using the specifically designed rigid internal fixation device, a segmental defect size of 2.0 mm in C57BL/6 mouse femur will show nonunion and can serve as a critical defect size for bone tissue engineering and bone regeneration research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app