RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ochronotic osteoarthropathy in a mouse model of alkaptonuria, and its inhibition by nitisinone.

BACKGROUND: Alkaptonuria (AKU) is a rare metabolic disease caused by deficiency of homogentisate 1,2 dioxygenase, an enzyme involved in tyrosine catabolism, resulting in increased circulating homogentisic acid (HGA). Over time HGA is progressively deposited as a polymer (termed ochronotic pigment) in collagenous tissues, especially the cartilages of weight bearing joints, leading to severe joint disease.

OBJECTIVES: To characterise blood biochemistry and arthropathy in the AKU mouse model (Hgd-/-). To examine the therapeutic effect of long-term treatment with nitisinone, a potent inhibitor of the enzyme that produces HGA.

METHODS: Lifetime levels of plasma HGA from AKU mice were measured by high-performance liquid chromatography (HPLC). Histological sections of the knee joint were examined for pigmentation. The effect of nitisinone treatment in both tissues was examined.

RESULTS: Mean (±SE) plasma HGA levels were 3- to 4-fold higher (0.148±0.019 mM) than those recorded in human AKU. Chondrocyte pigmentation within the articular cartilage was first observed at 15 weeks, and found to increase steadily with mouse age. Nitisinone treatment reduced plasma HGA in AKU mice throughout their lifetime, and completely prevented pigment deposition.

CONCLUSIONS: The AKU mouse was established as a model of both the plasma biochemistry of AKU and its associated arthropathy. Early-stage treatment of AKU patients with nitisinone could prevent the development of associated joint arthropathies. The cellular pathology of ochronosis in AKU mice is identical to that observed in early human ochronosis and thus is a model in which the early stages of joint pathology can be studied and novel interventions evaluated.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app