JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Total plasma Nε-(carboxymethyl)lysine and sRAGE levels are inversely associated with a number of metabolic syndrome risk factors in non-diabetic young-to-middle-aged medication-free subjects.

BACKGROUND: Interaction of advanced glycation end products (AGEs) with their specific cell-surface receptor for AGEs (RAGE) induces production of reactive oxygen species, pro-diabetic, pro-inflammatory, and pro-atherogenic responses. The metabolic syndrome (Metsy) imposes a high risk of development of cardiovascular disease and unequivocally predisposes the non-diabetics to type 2 diabetes mellitus. The aim of the study was to investigate the association between circulating soluble RAGE (sRAGE), Nε-(carboxymethyl)lysine (CML) or AGE-associated fluorescence of plasma (AGE-Fl) with the number of manifested Metsy risk factors in young-to-middle-aged medication-free non-diabetic subjects.

METHODS: Metsy was classified according to NCEP/ATP III criteria; plasma sRAGE and total CML were determined by ELISA methods and AGE-Fl fluorimetrically.

RESULTS: From among 437 participants aged 33±11 years, 58% were females. In total 174 subjects were Metsy risk factors-free, 142 presented one, 59 presented two risk factors, and 62 suffered from Metsy. Plasma sRAGE and CML/albumin levels decreased with increasing number of Metsy risk factors (p<0.01, both), while AGE-Fl/albumin levels remained similar. Multivariate analysis selected waist circumference as a main determinant of plasma sRAGE as well as CML/albumin levels.

CONCLUSIONS: In young-to-middle-aged non-diabetic medication-free subjects plasma total CML/albumin and sRAGE levels decrease prior to the manifestation of Metsy. With regards to RAGE-mediated CML trapping into adipose tissue inducing dysregulation of pro-inflammatory cytokines, adipokines, and the development of obesity-related insulin resistance, and the potential involvement of sRAGE in feedback regulation of the toxic effects of AGE/RAGE-mediated signaling, this early decline might be of clinical impact in development of type 2 diabetes and its complications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app