The association between higher order abilities, processing speed, and age are variably mediated by white matter integrity during typical aging

Paul R Borghesani, Tara M Madhyastha, Elizabeth H Aylward, Maya A Reiter, Bruce R Swarny, K Warner Schaie, Sherry L Willis
Neuropsychologia 2013, 51 (8): 1435-44
Although aging is associated with changes in brain structure and cognition it remains unclear which specific structural changes mediate individual cognitive changes. Several studies have reported that white matter (WM) integrity, as assessed by diffusion tensor imaging (DTI), mediates, in part, age-related differences in processing speed (PS). There is less evidence for WM integrity mediating age-related differences in higher order abilities (e.g., memory and executive functions). In 165 typically aging adults (age range 54-89) we show that WM integrity in select cerebral regions is associated with higher cognitive abilities and accounts variance not accounted for by PS or age. Specifically, voxel-wise analyses using tract-based spatial statistics (TBSS) revealed that WM integrity was associated with reasoning, cognitive flexibility and PS, but not memory or word fluency, after accounting for age and gender. While cerebral fractional anisotropy (FA) was only associated with PS; mean (MD), axial (AD) and radial (RD) diffusivity were associated with reasoning and flexibility. Reasoning was selectively associated with left prefrontal AD, while cognitive flexibility was associated with MD, AD and RD throughout the cerebrum. Average WM metrics within select WM regions of interest accounted for 18% and 29% of the variance in reasoning and flexibility, respectively, similar to the amount of variance accounted for by age. WM metrics mediated ~50% of the age-related variance in reasoning and flexibility and different proportions, 11% for reasoning and 44% for flexibility, of the variance accounted for by PS. In sum, (i) WM integrity is significantly, but variably, related to specific higher cognitive abilities and can account for a similar proportion of variance as age, and (ii) while FA is selectively associated with PS; while MD, AD and RD are associated with reasoning, flexibility and PS. This illustrates both the anatomical and cognitive selectivity of structure-cognition relationships in the aging brain.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"