JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

KLF8 involves in TGF-beta-induced EMT and promotes invasion and migration in gastric cancer cells.

PURPOSE: Krüppel-like factor 8 (KLF8), a downstream transcription factor of transforming growth factor-β1 (TGF-β1), has a role in tumorigenesis, tumor progress and epithelial-to-mesenchymal transition (EMT) induction. Recent studies mainly focused on its role in breast cancer and hepatocellular carcinoma; however, little is studied in gastric cancer. Here, we aim to explore whether KLF8 is involved in TGF-β1-induced EMT in gastric cancer cells.

METHODS: Western blot and real-time PCR assays were used to detect the expression of KLF8, E-cadherin and vimentin in gastric cancer cell line SGC7901 treated with or without TGF-β1. The lentivirus-mediated RNA interference technique was used to knock down the expression of KLF8 in gastric cancer cell line SGC7901. In vitro, the ability of cell migration and invasion were measured by transwell and wound healing assays; the cell motility was detected by high content screening assay.

RESULTS: TGF-β1 could induce EMT via down-regulating E-cadherin and up-regulating vimentin expression in gastric cancer cells. Further study found that TGF-β1 could induce KLF8 expression at the protein and mRNA levels in gastric cancer cells (P < 0.05). Western blot and real-time PCR assays found that small interference RNA (siRNA)-mediated KLF8 silence blocked TGF-β1-induced EMT-like transformation and subsequently reversed the loss of E-cadherin and gain of vimentin. In vitro, inhibition of KLF8 decreased TGF-β1-prompted cell migration, invasion and motility.

CONCLUSIONS: KLF8, a transcription factor, is involved in TGF-β1-induced EMT in gastric cancer cells and may be a novel therapeutic target for the treatment of gastric cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app