COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mechanical stimulation by ultrasound enhances chondrogenic differentiation of mesenchymal stem cells in a fibrin-hyaluronic acid hydrogel.

Chondrogenic differentiation and cartilage tissue formation derived from stem cells are highly dependent on both biological and mechanical factors. This study investigated whether or not fibrin-hyaluronic acid (HA) coupled with low-intensity ultrasound (LIUS), a mechanical stimulation, produces an additive or synergistic effect on the chondrogenesis of rabbit mesenchymal stem cells (MSCs) derived from bone marrow. For the purpose of comparison, rabbit MSCs were first cultured in fibrin-HA or alginate hydrogels, and then subjected to chondrogenic differentiation in chondrogenic-defined medium for 4 weeks in the presence of either transforming growth factor-beta3 (TGF-β3) (10 ng/mL) or LIUS treatment (1.0 MHz and 200 mW/cm(2) ). The resulting samples were evaluated at 1 and 4 weeks by histological observation, chemical assays, and mechanical analysis. The fibrin-HA hydrogel was found to be more efficient than alginate in promoting chondrogenesis of the MSCs by producing a larger amount of sulfated glycosaminoglycans (GAGs) and collagen, and engineered constructs made with the hydrogel demonstrated higher mechanical strength. At 4 weeks of tissue culture, the chondrogenesis of the MSCs in fibrin-HA were shown to be further enhanced by treatment with LIUS, as observed by analyses for the amounts of GAGs and collagen, and mechanical strength testing. In contrast, TGF-β3, a well-known chondrogenic inducer, showed a marginal additive effect in the amount of collagen only. These results revealed that LIUS further enhanced chondrogenesis of the MSCs cultured in fibrin-HA, in vitro, and suggested that the combination of fibrin-HA and LIUS is a useful tool in constructing high-quality cartilage tissues from MSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app