Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Heterogeneous nuclear ribonucleoprotein A2/B1 regulates the self-renewal and pluripotency of human embryonic stem cells via the control of the G1/S transition.

Stem Cells 2013 December
Self-renewal and pluripotency of human embryonic stem cells (hESCs) are a complex biological process for maintaining hESC stemness. However, the molecular mechanisms underlying these special properties of hESCs are not fully understood. Heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNP A2/B1) is a multifunctional RNA-binding protein whose expression is related to cell proliferation and carcinogenesis. In this study, we found that hnRNP A2/B1 expression was localized to undifferentiated hESCs and decreased upon differentiation of hESCs. hnRNP A2/B1 knockdown reduced the number of alkaline phosphatase-positive colonies in hESCs and led to a decrease in the expression of pluripotency-associated transcription factors OCT4, NANOG, and SOX2, indicating that hnRNP A2/B1 is essential for hESC self-renewal and pluripotency. hnRNP A2/B1 knockdown increased the expression of gene markers associated with the early development of three germ layers, and promoted the process of epithelial-mesenchymal transition, suggesting that hnRNP A2/B1 is required for maintaining the undifferentiated and epithelial phenotypes of hESCs. hnRNP A2/B1 knockdown inhibited hESC proliferation and induced cell cycle arrest in the G0/G1 phase before differentiation via degradation of cyclin D1, cyclin E, and Cdc25A. hnRNP A2/B1 knockdown increased p27 expression and induced phosphorylation of p53 and Chk1, suggesting that hnRNP A2/B1 also regulates the G1/S transition of hESC cell cycle through the control of p27 expression and p53 and Chk1 activity. Analysis of signaling molecules further revealed that hnRNP A2/B1 regulated hESC proliferation in a PI3K/Akt-dependent manner. These findings provide for the first time mechanistic insights into how hnRNP A2/B1 regulates hESC self-renewal and pluripotency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app