Add like
Add dislike
Add to saved papers

Estimator reduction and convergence of adaptive BEM.

A posteriori error estimation and related adaptive mesh-refining algorithms have themselves proven to be powerful tools in nowadays scientific computing. Contrary to adaptive finite element methods, convergence of adaptive boundary element schemes is, however, widely open. We propose a relaxed notion of convergence of adaptive boundary element schemes. Instead of asking for convergence of the error to zero, we only aim to prove estimator convergence in the sense that the adaptive algorithm drives the underlying error estimator to zero. We observe that certain error estimators satisfy an estimator reduction property which is sufficient for estimator convergence. The elementary analysis is only based on Dörfler marking and inverse estimates, but not on reliability and efficiency of the error estimator at hand. In particular, our approach gives a first mathematical justification for the proposed steering of anisotropic mesh-refinements, which is mandatory for optimal convergence behavior in 3D boundary element computations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app