JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Reversal of optical binding force by Fano resonance in plasmonic nanorod heterodimer.

Optics Express 2013 March 12
We present calculations of the optical force on heterodimer of two gold nanorods aligned head-to-tail, under plane wave illumination that is polarized along the dimer axis. It is found that near the dipole-quadrupole Fano resonance, the optical binding force between the nanorods reverses, indicating an attractive to repulsive transition. This is in contrast to homodimer which in similar configuration shows no negative binding force. Moreover, the force spectrum features asymmetric line shape and shifts accordingly when the Fano resonance is tuned by varying the nanorods length or their gap. We show that the force reversal is associated with the strong phase variation between the hybridized dipole and quadrupole modes near the Fano dip. The numerical results may be demonstrated by a near-field optical tweezer and shall be useful for studying "optical matters" in plasmonics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app