A novel mechanism for vascular insulin resistance in normotensive young SHRs: hypoadiponectinemia and resultant APPL1 downregulation

Wenjuan Xing, Wenjun Yan, Peilin Liu, Lele Ji, Youyou Li, Lu Sun, Ling Tao, Haifeng Zhang, Feng Gao
Hypertension 2013, 61 (5): 1028-35
Vascular insulin resistance contributes to elevated peripheral vascular resistance and subsequent hypertension. Clinical observation showed that lower plasma adiponectin concentration is significantly associated with hypertension. This study was aimed to determine whether hypoadiponectinemia induces vascular insulin resistance before systemic hypertension and the underlying mechanisms. Four-week-old young spontaneously hypertensive rats (ySHRs, normotensive) and adiponectin knockout (KO; APN(-/-)) mice were used to evaluate the role of hypoadiponectinemia in insulin-induced vasodilation of resistance vessels. ySHRs showed significant vascular insulin resistance as evidenced by the blunted vasorelaxation response to insulin in mesenteric arterioles compared with that of age-matched Wistar-Kyoto controls. Serum adiponectin and mesenteric arteriolar APPL1 (an adaptor protein that mediates adiponectin signaling) expression of ySHRs were significantly reduced. In addition, Akt and endothelial NO synthase phosphorylation and NO production in arterioles were markedly reduced, whereas extracellular signal-regulated protein kinases 1/2 (ERK1/2) phosphorylation and endothelin-1 secretion were augmented in ySHRs. APN(-/-) mice showed significantly decreased APPL1 expression and vasodilation evoked by insulin. More importantly, treatment of ySHRs in vivo with the globular domain of adiponectin for 1 week increased APPL1 expression and insulin-induced vasodilation, and restored the balance between insulin-stimulated endothelial vasodilator NO and vasoconstrictor endothelin-1. In cultured human umbilical vein endothelial cells, globular domain of adiponectin upregulated APPL1 expression. Suppression of APPL1 expression with small interfering RNA markedly blunted the globular domain of adiponectin-induced insulin sensitization as evidenced by reduced Akt/endothelial NO synthase and potentiated ERK1/2 phosphorylations. In conclusion, hypoadiponectinemia induces APPL1 downregulation in the resistance vessels, contributing to the development of vascular insulin resistance by differentially modulating the Akt/endothelial NO synthase/NO and ERK1/2/endothelin-1 pathways in vascular endothelium in normotensive ySHRs.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"