Construction of a polyhedral metal-organic framework via a flexible octacarboxylate ligand for gas adsorption and separation
Zu-Jin Lin, Yuan-Biao Huang, Tian-Fu Liu, Xiang-Ying Li, Rong Cao
Inorganic Chemistry 2013 March 18, 52 (6): 3127-32
23469758
A flexible octacarboxylate ligand, tetrakis[(3,5-dicarboxyphenyl)oxamethyl]methane (H8X), has been used to construct a highly porous metal-organic framework (In2X)(Me2NH2)2(DMF)9(H2O)5 (1), which is comprised of octahedral and cuboctahedral cages and shows a rare (4,8)-connected scu topology. Gas adsorption studies of N2, H2 on the actived 1 at 77 K reveal a Langmuir surface area of 1707 m(2) g(-1), a BET surface area of 1555 m(2) g(-1), a total pore volume of 0.62 cm(3) g(-1), and a H2 uptake of 1.49 wt % at 1 bar and 3.05 wt % at 16 bar. CO2, CH4, and N2 adsorption studies at 195, 273, 285, and 298 K and also ideal adsorbed solution theory (IAST) calculations demonstrate that 1 has high selectivites of CO2 over CH4 and N2. The resulting framework represents a MOF with the highest gas uptakes and gas selectivities (CO2 over CH4 and N2) constructed by flexible ligands.
Full Text Links
Find Full Text Links for this Article
You are not logged in. Sign Up or Log In to join the discussion.