JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effectiveness of the histone deacetylase inhibitor (S)-2 against LNCaP and PC3 human prostate cancer cells.

Histone deacetylase inhibitors (HDACi) represent a promising class of epigenetic agents with anticancer properties. Here, we report that (S)-2, a novel hydroxamate-based HDACi, shown previously to be effective against acute myeloid leukemia cells, was also a potent inducer of apoptosis/differentiation in human prostate LNCaP and PC3 cancer cells. In LNCaP cells (S)-2 was capable of triggering H3/H4 histone acetylation, H2AX phosphorylation as a marker of DNA damage and producing G0/G1 cell cycle arrest. Consistently, (S)-2 led to enhanced expression of both the protein and mRNA p21 levels in LNCaP cells but, contrary to SAHA, not in normal non-tumorigenic prostate PNT1A cells. Mechanistic studies demonstrated that (S)-2-induced apoptosis in LNCaP cells developed through the cleavage of pro-caspase 9 and 3 and of poly(ADP-ribose)-polymerase accompanied by the dose-dependent loss of mitochondrial membrane potential. Indeed, the addition of the pan-caspase inhibitor Z-VAD-fmk greatly reduced drug-mediated apoptosis while the antioxidant N-acetyl-cysteine was virtually ineffective. Importantly, preliminary data with nude mice xenografted with LNCaP cells showed that (S)-2 prompted a decrease in the tumor volume and an increase in H2AX phosphorylation within the cancer cells. Moreover, the highly metastatic prostate cancer PC3 cells were also sensitive to (S)-2 that: i) induced growth arrest and moderate apoptosis; ii) steered cells towards differentiation and neutral lipid accumulation; iii) reduced cell invasiveness potential by decreasing the amount of MMP-9 activity and up-regulating TIMP-1 expression; and iv) inhibited cell motility and migration through the Matrigel. Overall, (S)-2 has proven to be a powerful HDACi capable of inducing growth arrest, cell death and/or differentiation of LNCaP and PC3 prostate cancer cells and, due to its low toxicity and efficacy in vivo, might also be of clinical interest to support conventional prostate cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app