Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Fibroblast growth factor receptors-1 and -3 play distinct roles in the regulation of bladder cancer growth and metastasis: implications for therapeutic targeting.

Fibroblast growth factor receptors (FGFRs) are activated by mutation and overexpressed in bladder cancers (BCs), and FGFR inhibitors are currently being evaluated in clinical trials in BC patients. However, BC cells display marked heterogeneity in their responses to FGFR inhibitors, and the biological mechanisms underlying this heterogeneity are not well defined. Here we used a novel inhibitor of FGFRs 1-3 and RNAi to determine the effects of inhibiting FGFR1 or FGFR3 in a panel of human BC cell lines. We observed that FGFR1 was expressed in BC cells that also expressed the "mesenchymal" markers ZEB1 and vimentin, whereas FGFR3 expression was restricted to the E-cadherin- and p63-positive "epithelial" subset. Sensitivity to the growth-inhibitory effects of BGJ-398 was also restricted to the "epithelial" BC cells and it correlated directly with FGFR3 mRNA levels but not with the presence of activating FGFR3 mutations. In contrast, BGJ-398 did not strongly inhibit proliferation but did block invasion in the "mesenchymal" BC cells in vitro. Similarly, BGJ-398 did not inhibit primary tumor growth but blocked the production of circulating tumor cells (CTCs) and the formation of lymph node and distant metastases in mice bearing orthotopically implanted "mesenchymal" UM-UC3 cells. Together, our data demonstrate that FGFR1 and FGFR3 have largely non-overlapping roles in regulating invasion/metastasis and proliferation in distinct "mesenchymal" and "epithelial" subsets of human BC cells. The results suggest that the tumor EMT phenotype will be an important determinant of the biological effects of FGFR inhibitors in patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app