JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Soy protein inhibits inflammation-induced VCAM-1 and inflammatory cytokine induction by inhibiting the NF-κB and AKT signaling pathway in apolipoprotein E-deficient mice.

PURPOSE: Inflammation is a hallmark of many diseases, such as atherosclerosis, autoimmune diseases, obesity, and cancer. Isoflavone-free soy protein diet (SPI(-)) has been shown to reduce atherosclerotic lesions in a hyperlipidemic mouse model compared to casein (CAS)-fed mice, despite unchanged serum lipid levels. However, possible mechanisms contributing to the athero-protective effect of soy protein remain unknown. Therefore, we investigated whether and how SPI(-) diet inhibits inflammatory responses associated with atherosclerosis.

METHODS: Apolipoprotein E knockout (apoE-/-) mice (5-week) were fed CAS or SPI(-) diet for 1 or 5 week to determine LPS- and hyperlipidemia-induced acute and chronic inflammatory responses, respectively. Expression of NF-κB-dependent inflammation mediators such as VCAM-1, TNF-α, and MCP-1 were determined in aorta and liver. NF-κB, MAP kinase, and AKT activation was determined to address mechanisms contributing to the anti-inflammatory properties of soy protein/peptides.

RESULTS: Isoflavone-free soy protein diet significantly reduced LPS-induced VCAM-1 mRNA and protein expression in aorta compared to CAS-fed mice. Reduced VCAM-1 expression in SPI(-)-fed mice also paralleled attenuated monocyte adhesion to vascular endothelium, a critical and primary processes during inflammation. Notably, VCAM-1 mRNA and protein expression in lesion-prone aortic arch was significantly reduced in apoE-/- mice fed SPI(-) for 5 weeks compared with CAS-fed mice. Moreover, dietary SPI(-) potently inhibited LPS-induced NF-κB activation and the subsequent upregulation of pro-inflammatory cytokines, including TNF-α, IL-6, IL-1β, and MCP-1. Interestingly, SPI(-) inhibited NF-κB-dependent inflammatory responses by targeting I-κB phosphorylation and AKT activation with no effect on MAP kinase pathway. Of the five putative soy peptides, four of the soy peptides inhibited LPS-induced VCAM-1, IL-6, IL-8, and MCP-1 protein expression in human vascular endothelial cells in vitro.

CONCLUSIONS: Collectively, our findings suggest that anti-inflammatory properties of component(s) of soy protein/peptides may be a possible mechanism for the prevention of chronic inflammatory diseases such as atherosclerosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app