Let-7: a regulator of the ERα signaling pathway in human breast tumors and breast cancer stem cells

Xin Sun, Sida Qin, Chong Fan, Chongwen Xu, Ning Du, Hong Ren
Oncology Reports 2013, 29 (5): 2079-87
The oncogenic role of estrogen receptor (ER)α and its correlation with let-7 microRNAs (miRNAs) have been studied and confirmed in breast tumors; however, this correlation has not been investigated in breast cancer stem cells (BCSCs). In the present study, we detected the expression of let-7 and ERα in ER-positive breast tumor tissues. Furthermore, we used a FACSAria cell sorter to separate side population (SP) cells from the MCF-7 and T47-D cell lines by Hoechst 33342 staining. The expression of let-7 miRNAs, ERα and its downstream genes in SP and non-SP (NSP) cells were analyzed. In additional experiments, we transfected a plasmid expressing let-7a into SP cells isolated from the MCF-7 and T47-D cell lines in order to observe changes in the expression of downstream genes (cyclin D1 and pS2). The correlation among let-7, ERα and ERα downstream genes suggested that let-7 acts as a tumor suppressor by inhibiting ERα-mediated cellular malignant growth in ER-positive breast cancer stem cells. The suppression of ERα by the upregulation of let-7 expression may be a promising strategy for the inhibition of the ER signaling pathway and for the elimination of cancer stem cells, thus aiding in the treatment of breast cancer.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"