JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Low dystrophin levels increase survival and improve muscle pathology and function in dystrophin/utrophin double-knockout mice.

Duchenne muscular dystrophy (DMD) is a severe muscle-wasting disorder caused by the lack of functional dystrophin. There is no cure, but several clinical trials aimed to restore the synthesis of functional dystrophin are underway. The dystrophin levels needed for improvement of muscle pathology, function, and overall vitality are not known. Here, we describe the mdx/utrn(-/-)/Xist(Δhs) mouse model, which expresses a range of low dystrophin levels, depending on the degree of skewing of X inactivation in a utrophin-negative background. Mdx/utrn(-/-) mice develop severe muscle weakness, kyphosis, respiratory and heart failure, and premature death closely resembling DMD pathology. We show that at dystrophin levels < 4%, survival and motor function in these animals are greatly improved. In mice expressing >4% dystrophin, histopathology is ameliorated, as well. These findings suggest that the dystrophin levels needed to benefit vitality and functioning of patients with DMD might be lower than those needed for full protection against muscle damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app