OPEN IN READ APP
JOURNAL ARTICLE

Impaired mitochondrial biogenesis due to dysfunctional adiponectin-AMPK-PGC-1α signaling contributing to increased vulnerability in diabetic heart

Wenjun Yan, Haifeng Zhang, Peilin Liu, Han Wang, Jingyi Liu, Chao Gao, Yi Liu, Kun Lian, Lu Yang, Lu Sun, Yunping Guo, Lijian Zhang, Ling Dong, Wayne Bond Lau, Erhe Gao, Feng Gao, Lize Xiong, Haichang Wang, Yan Qu, Ling Tao
Basic Research in Cardiology 2013, 108 (3): 329
23460046
Impaired mitochondrial biogenesis causes skeletal muscle damage in diabetes. However, whether and how mitochondrial biogenesis is impaired in the diabetic heart remains largely unknown. Whether adiponectin (APN), a potent cardioprotective molecule, regulates cardiac mitochondrial function has also not been previously investigated. In this study, electron microscopy revealed significant mitochondrial disorders in ob/ob cardiomyocytes, including mitochondrial swelling and cristae disorientation and breakage. Moreover, mitochondrial biogenesis of ob/ob cardiomyocytes is significantly impaired, as evidenced by reduced Ppargc-1a/Nrf-1/Tfam mRNA levels, mitochondrial DNA content, ATP content, citrate synthase activity, complexes I/III/V activity, AMPK phosphorylation, and increased PGC-1α acetylation. Since APN is an upstream activator of AMPK and APN plasma levels are significantly reduced in ob/ob mice, we further tested the hypothesis that reduced APN in ob/ob mice is causatively related to mitochondrial biogenesis impairment. One week of APN treatment of ob/ob mice activated AMPK, reduced PGC-1α acetylation, increased mitochondrial biogenesis, and attenuated mitochondrial disorders. In contrast, knocking out APN inhibited AMPK-PGC-1α signaling and impaired both mitochondrial biogenesis and function. The ob/ob mice exhibited lower survival rates and exacerbated myocardial injury after MI, when compared to controls. APN supplementation improved mitochondrial biogenesis and attenuated MI injury, an effect that was almost completely abrogated by the AMPK inhibitor compound C. In high glucose/high fat treated neonatal rat ventricular myocytes, siRNA-mediated knockdown of PGC-1α blocked gAd-enhanced mitochondrial biogenesis and function and attenuated protection against hypoxia/reoxygenation injury. In conclusion, hypoadiponectinemia impaired AMPK-PGC-1α signaling, resulting in dysfunctional mitochondrial biogenesis that constitutes a novel mechanism for rendering diabetic hearts more vulnerable to enhanced MI injury.

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
23460046
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"