JOURNAL ARTICLE

Characterization of spontaneous and TGF-β-induced cell motility of primary human normal and neoplastic mammary cells in vitro using novel real-time technology

Katharina Mandel, Daniel Seidl, Dirk Rades, Hendrik Lehnert, Frank Gieseler, Ralf Hass, Hendrik Ungefroren
PloS One 2013, 8 (2): e56591
23457587
The clinical complications derived from metastatic disease are responsible for the majority of all breast cancer related deaths. Since cell migration and invasion are a prerequisite for metastasis their assessment in patient cancer cells in vitro may have prognostic value for the tumor's metastatic capacity. We employed real-time cell analysis (RTCA) on the xCELLigence DP system to determine in vitro motility of patient-derived primary human breast cancer epithelial cells (HBCEC). Initially, the RTCA assay was validated using established human breast cancer cell lines with either an invasive (MDA-MB-231, MDA-MB-435s) or a non-invasive phenotype (MCF-7, MDA-MB-468), and primary NSCLC cells (Tu459). Previous standard assays of cell migration/invasion revealed that only MDA-MB-231, -435s, and Tu459 cells exhibited spontaneous and TGF-β1-stimulated migration and invasion through a Matrigel barrier. In the present study, the TGF-β1-stimulated activities could be blocked by SB431542, a potent kinase inhibitor of the TGF-β type I receptor ALK5. Application of the RTCA assay to patient-derived tumor cells showed that 4/4 primary HBCEC and primary NSCLC cells, but not normal human mammary epithelial cells (HMEC), displayed high spontaneous migratory and invasive activity which correlated with higher MMP-2 expression and uPA protein levels in HBCEC compared to HMEC. Upon treatment with TGF-β1, HBCEC exhibited morphologic and gene regulatory alterations indicative of epithelial-to-mesenchymal transition. However, exclusively the invasive but not the migratory activity of HBCEC was further enhanced by TGF-β1. This indicates the requirement for molecular, e.g. integrin interactions with Matrigel components in HBCEC in order to become responsive to pro-invasive TGF-β effects. Together, these results show for the first time that tumorigenic HBCEC but not normal HMEC possess a strong basal migratory as well as a basal and TGF-β1-inducible invasive potential. These findings qualify the RTCA assay as an in vitro migration/invasion testing system for patient-specific primary breast cancer cells.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
23457587
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"