MicroRNA-146a targets PRKCE to modulate papillary thyroid tumor development

Xiaoping Zhang, Dan Li, Maoquan Li, Meng Ye, Lanbao Ding, Haidong Cai, Da Fu, Zhongwei Lv
International Journal of Cancer. Journal International du Cancer 2014 January 15, 134 (2): 257-67
MicroRNAs are single-stranded noncoding RNAs composed of approximately 22 nucleotides that suppress gene expression by selectively binding via base-pairing to the complementary 3'-untranslated region (3'-UTR) of messenger RNA transcripts. Protein kinase C epsilon (PKCε) is an important modulating member of the transducing Ras/Raf-1 signal pathway; a computational search revealed miR-146a putatively binds to the 3'-UTR of the PRKCE gene, and thus decreasing PKCε expression. Moreover, PKCε inhibits mitochondrial apoptosis and is associated with the Bcl family. However, it has been previously reported that miR-146a expression in papillary thyroid carcinoma (PTC) is slightly elevated. Thus, we hypothesized that because miR-146a expression depends on nuclear factor kappaB (NF-κB) activation and NF-κB expression is elevated in PTC, miR-146a is potentially upregulated in PTC via negative feedback of NF-κB, and thus suppressing PKCε expression. In our study, we investigated whether overexpression of miR-146a, a tumor-suppressing-miR, in PTC cells decreases cell survival and induces apoptosis. Luciferase reporter assay analysis confirmed the direct binding of miR-146a and PRKCE 3'-UTR. Specific overexpression of exogenous miR-146a significantly decreased PKCε levels in PTC cell line NPA-187 and increased apoptosis. Additionally, using stably expressing miR-146a thyroid carcinoma cells to establish subcutaneous tumors, the tumor growth exhibited significant inhibition. Our study confirmed the tumor-suppressing role of miR-146a in thyroid carcinoma cells and contributes to the knowledge regarding modulation of Ras/Raf-1 signal transduction and apoptosis via PKCε targeted by miR-146a in PTC; moreover, our findings confirmed that miR-146a is involved in the feedback system of the classical NF-κB signal pathway in PTC.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"