JOURNAL ARTICLE
VALIDATION STUDIES
Add like
Add dislike
Add to saved papers

Using an innovative Quality-by-Design approach for development of a stability indicating UHPLC method for ebastine in the API and pharmaceutical formulations.

A stability-indicating ultra high performance liquid chromatographic (UHPLC) method has been developed for purity testing of ebastine and its pharmaceutical formulations. Successful chromatographic separation of the API from impurities was achieved on a Waters Acquity UPLC BEH C18, 50 mm × 2.1 mm, 1.7 μm particle size column with gradient elution of 10 mM acetate buffer pH 6.2 and a mixture of acetonitrile/2-propanol (1:1) as the mobile phase. Incorporating Quality by Design (QbD) principles to the method development approach by using the chromatography modeling software DryLab4 allows the visualization of a "Design Space", a region in which changes to method parameters will not significantly affect the results as defined in the ICH guideline Q8 (R2). A verification study demonstrated that the established model for Design Space is accurate with a relative error of prediction of only 0.6%. The method was fully validated for specificity, linearity, accuracy and precision, and robustness in compliance to the ICH guideline Q2 (R1). The method was found to be linear in the concentration range from the quantification limit (LOQ) to 125% of the specification limit for ebastine and each of the impurities with correlation coefficients of not less than 0.999. The recovery rate was between 98.15 and 100.30% for each impurity. The repeatability and intermediate precision (RSD) were less than 3.2% for ebastine and each of the impurities. The robustness of the developed method was studied by varying the six parameters: gradient time, temperature, ternary composition of the eluent, flow rate and start and end concentration of the gradient at 3 levels (+1, 0, -1). The resulting 729 experiments were performed in silico from the previously constructed model for Design Space and showed that the required resolution of 2.0 can be reached in all experiments. To prove the stability-indicating performance of the method, forced degradation (acid and base hydrolysis, oxidation, photolytic and thermal stress conditions) of ebastine was carried out. Baseline separation could be achieved for all peaks of the impurities, the degradation products and the API. Total run time was only 4 min, which is an impressive 40-fold increase in productivity in comparison to the method published in the Ph. Eur. monograph and allowed purity testing of more than 360 samples per day.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app