JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Antioxidant effects of diallyl trisulfide on high glucose-induced apoptosis are mediated by the PI3K/Akt-dependent activation of Nrf2 in cardiomyocytes.

BACKGROUND: Hyperglycemia-induced reactive oxygen species (ROS) generation contributes to development of diabetic cardiomyopathy. Nuclear factor E2-related factor 2 (Nrf2), a redox-sensing transcription factor, induces the antioxidant enzyme expressions. Diallyl trisulfide (DATS) is the most powerful antioxidant among the sulfur-containing compounds in garlic oil. We investigated whether DATS inhibits hyperglycemia-induced ROS production via Nrf2-mediated activation of antioxidant enzymes in cardiac cells exposed to high glucose (HG).

METHODS AND RESULTS: Treatment of H9c2 cells with HG resulted in an increase in intracellular ROS level and caspase-3 activity, which were markedly reduced by the administration of DATS (10 μM). DATS treatment significantly increased Nrf2 protein stability and nuclear translocation, upregulated downstream gene HO-1, and suppressed its repressor Keap1. However, apoptosis was not inhibited by DATS in cells transfected with Nrf2-specific siRNA. Inhibition of PI3K/Akt signaling by LY294002 (PI3K inhibitor) or PI3K-specific siRNA not only decreased the level of DATS-induced Nrf2-mediated HO-1 expression, but also diminished the protective effects of DATS. Similar results were also observed in high glucose-exposed neonatal primary cardiomyocytes and streptozotocin-treated diabetic rats fed DATS at a dose of 40 mg/kg BW.

CONCLUSIONS: Our findings indicate that DATS protects against hyperglycemia-induced ROS-mediated apoptosis by upregulating the PI3K/Akt/Nrf2 pathway, which further activates Nrf2-regulated antioxidant enzymes in cardiomyocytes exposed to HG.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app