JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Novel insights in the regulation and mechanism of androgen action on bone.

PURPOSE OF REVIEW: This review provides an update on the associations of testosterone, estrogens, sex hormone binding globulin, GH-IGF-I, osteocalcin and mechanical loading with relevance to skeletal health.

RECENT FINDINGS: The simple concept of a dual model of action of androgens, i.e. either directly via the androgen receptor or indirectly by estrogens, is proving more complicated because of novel interactions of these hormones and their receptors with other hormonal as well as mechanical signals.

SUMMARY: Testosterone - in contrast with estrogen - is not uniformly associated with fracture risk in men. However, androgen receptor mediated action is clearly important for trabecular bone maintenance in male mice whereas both estrogens and androgens regulate cortical bone growth. The osteoblast and osteocyte appear to be involved in such androgen receptor mediated action on bone in male mice. Studies in mice also showed an unexpected interaction between osteocalcin and testosterone production in males and, vice versa, between ovarian production of follicle-stimulating hormone with testosterone and potentially bone formation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app